Published on

奇奇怪怪的数学题 Weird Math

Authors

Problem 1.

199200199^{200}200199200^{199}哪个大?

Solution

对付这一类型的题目,手算对数最简单无脑。

ln(1+x)=x12x2+13x3+ \ln (1+x) = x - \frac{1}{2}x^2 +\frac{1}{3}x^3 + \dots

那么

ln1+x1x=2(x+13x3+15x5+)\ln \frac{1+x}{1-x} = 2(x+\frac{1}{3}x^3+\frac{1}{5}x^5 + \dots)

我们设

f(x)=2(x+13x3+15x5+)f(x) = 2(x+\frac{1}{3}x^3+\frac{1}{5}x^5 + \dots)

那么

ln256ln200=ln1+56/456156/456=f(56456)\ln 256 - \ln 200 = \ln \frac{1+ 56/456}{1 - 56/456} = f(\frac{56}{456})
ln256ln199=f(57455)\ln 256 - \ln 199 = f(\frac{57}{455})
199ln200200ln199=200f(56/456)199f(57/455)ln256=199(f(56/456)f(57/455))+f(56/456)ln256\begin{aligned} &199 \ln 200 - 200 \ln 199 \\ =& 200f(56/456) - 199f(57/455) - \ln256 \\ =& 199(f(56/456) - f(57/455)) + f(56/456) - \ln256 \end{aligned}

显然

f(56/456)<f(57/455),f(56/256)<1<ln(256)f(56/456) < f(57/455), \quad f(56/256) < 1 < \ln(256)

所以

199ln200200ln199<0,200199<199200199 \ln 200 - 200 \ln 199 < 0, \quad 200^{199} < 199^{200}

具体来算

ln2=f(1/3)2(1/3+1/34+1/5×1/35)0.693ln200=8ln2f(56/456)5.5442×56/456=5.298ln199=8ln2f(57/455)5.5442×57/455=5.293199ln2001054.3200ln1991059.6\ln2 = f(1/3) \approx 2(1/3 + 1/3^4 + 1/5 \times 1/3^5) \approx 0.693 \\ \ln200 = 8 \ln 2 - f(56/456) \approx 5.544 - 2 \times 56/456 = 5.298 \\ \ln199 = 8\ln2 - f(57/455) \approx 5.544 - 2 \times 57/455 = 5.293 \\ 199 \ln 200 \approx 1054.3\\ 200 \ln 199 \approx 1059.6

Problem 2.

圆上任选三点组成三角形,这个三角形是锐角、钝角和直角三角形的概率分别是多少?

Solution

任取三点,三角形为锐角,等价于

A:θ1[0,2π]B:θ2[θ1+π,θ1+2π]C:θ3[θ2π,θ1+π]A: \theta_1 \in [0, 2\pi] \\ B: \theta_2 \in [\theta_1 + \pi, \theta_1 + 2\pi] \\ C: \theta_3 \in [\theta_2 - \pi, \theta_1 + \pi]

根据贝叶斯

P(A,B,C)=P(CA,B)P(A,B)=P(CA,B)P(BA)P(A)\begin{aligned} P(A, B, C) &= P(C|A, B) P(A, B) \\ &= P(C|A, B) P( B|A) P(A) \end{aligned}

很显然

P(A)=1P(BA)=π2π=0.5P(A) = 1\\ P(B|A) = \frac{\pi}{2\pi} = 0.5 \\

x=θ2θ1x = \theta_2 - \theta_1, 那么

P(CA,B)=π2π12πdx=0.5 P(C|A, B) = \int_{\pi}^{2\pi} \frac{1}{2\pi} dx = 0.5

所以

P(A,B,C)=0.25P(A, B, C) = 0.25

四点包球的情况,其实也很简单。任取单位球面三点 A,B,CA,B,C ,构成球面三角形。其球心对称点为 A,B,CA', B', C' ,那么如果点 DABCD \in \triangle A'B'C' ,则四点包圆。以下所有三角形都是指球面三角形。

X:A,B,CRY:DABCX: A, B, C \in \odot R \\Y: D \in \triangle A'B'C' \\

那么

P(X,Y)=P(YX)P(X)P(X, Y) = P(Y|X)P(X)

显然,P(X)=1P(X) = 1,且有

P(YX)=ABCS(ABC)4πp(ABC)=ABCS(ABC)4πp(ABC)\begin{aligned} P(Y|X) &= \int_{\triangle A'B'C'} \frac{S(\triangle A'B'C')}{4\pi} p(\triangle A'B'C') \\ &= \int_{\triangle ABC} \frac{S(\triangle ABC)}{4\pi} p(\triangle ABC)\\ \end{aligned} \\
S(ABC)+S(ABC)=α2π×4π=2αp(ABC)=p(ABC)S(\triangle ABC) + S(\triangle A'BC) = \frac{\alpha}{2\pi} \times 4\pi = 2\alpha \\ p(\triangle ABC) = p(\triangle A'BC) \\

所以

2P(YX)=0π2α4π1πdα=α24π20π=142 P(Y|X) = \int_{0}^{\pi} \frac{2\alpha}{4\pi} \frac{1}{\pi} d\alpha = \frac{\alpha^2}{4\pi^2}|_{0}^{\pi} = \frac{1}{4}
P(X,Y)=18\\ P(X, Y) = \frac{1}{8}

Problem 3.

已知a,b,c{R}+,a+b+c=1a,b,c \in \mathbb\{R\}^+, a+b+c=1,证明a2+b2+c2+2abc[11/27,1)a²+b²+c²+2abc \in [11/27, 1)

Solution

问题等价于以下求 f(x,y)f(x,y) 的极值:

f(x,y)=x2+y2+(1xy)2+2xy(1xy)1>x>0,1>y>0,x+y<1f(x,y) = x^2 + y^2 + (1-x-y)^2 + 2xy(1-x-y) \\ 1>x > 0, 1>y > 0, x + y < 1

易知

f(x,y)=f(y,x)dfdx=2x+2(x+y1)+2y4xy2y2=4x+4y4xy2y22d2fdxdy=4(1xy)>0d2fdx2=4(1y)>0f(x,y) = f(y,x)\\ \frac{df}{dx} = 2x + 2(x+y-1)+2y-4xy-2y^2 = 4x+4y-4xy-2y^2-2\\ \frac{d^2f}{dxdy} = 4(1-x-y)>0 \\ \frac{d^2f}{dx^2} = 4(1-y)>0

所以曲面 z=f(x,y) 为凹面,且关于 x=yx=y 对称。那么 z=f(x,y)z=f(x,y) 的极小值点必然在对称面与曲面的交线上,也就是 g(x)=f(x,x)=2x2+(2x1)2+2x2(12x),0<x<1/2g(x) = f(x, x) = 2x^2+(2x-1)^2+2x^2(1-2x), 0 \lt x \lt 1/2 这条线上。令g(x)=0g'(x)=0 则有

8x6x22=0x=1,x=138x-6x^2-2 = 0\\ x = 1, x=\frac{1}{3}

只有 x=1/3x = 1/3 在定义域,所以 g(x)g(1/3)=11/27g(x) \ge g(1/3)=11/27 ,且 g(x)<max(g(0),g(1/2))=1g(x) \lt \max(g(0), g(1/2)) = 1。同时,很容易知道, f(x,y)f(x,y) 的最大值在边界上,也就是f(1/2,1/2),f(0,1),f(1,0),f(0,0)f(1/2,1/2), f(0, 1), f(1, 0), f(0, 0) 其中一点上,而这些值中最大为1,所以

1127f(x,y)<1\frac{11}{27} \le f(x,y) < 1

Problem 4.

如何确定 Vasile 不等式 (a2+b2+c2)23(a3b+b3c+c3a)(a^2+b^2+c^2)^2 \geq 3(a^3b+b^3c+c^3a) 的取等条件?

Solution

其非平凡取等条件为

a:b:c=sin24π7:sin22π7:sin2π7a:b:c = \sin^2\frac{4\pi}{7}:\sin^2\frac{2\pi}{7}:\sin^2\frac{\pi}{7}

借用python的sympy解一下高次方程,好像很容易的样子。

f(a,b,c)=LHSRHS0f(a, b, c) = LHS - RHS \geq 0,则有

fa=2(a2+b2+c2)2a3(3a2b+c3)=0fb==0fc==0\begin{aligned}\frac{\partial f}{\partial a} &= 2(a^2 + b^2 + c^2) 2a- 3(3a^2b + c^3) &= 0\\ \frac{\partial f}{\partial b} &= \dots &= 0\\ \frac{\partial f}{\partial c} &= \dots &= 0 \\ \end{aligned}

a=k,b=xk,c=yk,k0a = k, b = xk, c = yk, k \neq 0,则有

4(1+x2+y2)3(3x+y3)=04(1+x2+y2)x3(3x2y+1)=04(1+x2+y2)y3(3y2+x3)=04(1+x^2 + y^2) - 3(3x + y^3) =0\\4(1 + x^2 + y^2) x -3(3x^2y + 1) = 0 \\ 4(1 + x^2 + y^2) y - 3(3y^2 + x^3) = 0 \\

那么

3x2+y3x3x2y1=03xy+y43y2x3=0\\ 3x^2 + y^3x - 3x^2y - 1 = 0 \\ 3xy + y^4 - 3y^2 - x^3 = 0

再设  x=rsinθ,y=rcosθx = r\sin\theta, y = r\cos\theta ,则有

r2cos4θrsin3θ+3sinθcosθ3cos2θ=0 r^2 \cos^4 \theta - r \sin^3 \theta + 3\sin\theta \cos\theta - 3\cos^2 \theta = 0

cosθ>0\cos\theta > 0,因为x=ytanθx = y \tan\theta,则有

y2cos2θxsin2θ+3cosθsinθ3cos2θ=0y=rcosθ=(tan3θ+tan6θ12tanθ+12)/2y^2 \cos^2\theta - x \sin^2\theta + 3\cos\theta\sin\theta - 3\cos^2\theta =0 \\y = r\cos\theta = (\tan^3\theta + \sqrt{\tan^6 \theta - 12 \tan \theta + 12}) /2

所以

3y2tan2θ+y4tanθ3y3tan2θ1=03y^2\tan^2\theta + y^4\tan \theta - 3y^3 \tan^2 \theta - 1 = 0

我们设t=tanθt = \tan\theta,用sympy解得

(t1)(t35t2+6t1)(t3+2t2t1)(t6+4t512t46t3+25t212t+1)=0(t - 1) ( t ^3 - 5t^2 + 6t - 1)( t ^3 +2t^2 -t - 1)(t^6 + 4 t^5 - 12 t^4 - 6t^3 + 25t^2 - 12t + 1) = 0

除去虚数根和平凡解t=1t=1,只需验证满足

t=a/b,b/c,c/at = a/b, b/c, c/a

中任意一个即可。我们发现  t35t2+6t1=0t ^3 - 5t^2 + 6t - 1 = 0的三组解正好满足条件。接下来用三角函数法解此三次方程即可。我们考虑

t=bc=4cos2π7=2(1+cos2π7)t = \frac{b}{c} = 4\cos^2\frac{\pi}{7} = 2(1+\cos\frac{2\pi}{7})

考虑以下三角形

注意这里三角形的x,yx,y与上面a,b,ca,b,c转换用的x,yx,y含义不同。易知x=y+1x = y + 1,且有

cosADB=y2=t21\cos \angle ADB = \frac{y}{2} = \frac{t}{2}-1 \\

则有t=y+2=x+1t = y + 2 = x+1,又有

cosC=x2y=2x212x2\cos \angle C = \frac{x}{2y} = \frac{2x^2-1}{2x^2}

那么

t1t2=2(t1)21(t1)2\frac{t-1}{t-2} = \frac{2(t-1)^2-1}{(t-1)^2}

t35t2+6t1=0t^3-5t^2+6t-1 = 0