最近真的是闲的,一连做了好几道解析几何的题目。这个年纪回过头去看这种当时极为头疼的东西,发现这种题其实不需要太多脑子,弄清套路之后,就是纯体力活儿。
Problem 1.Line l l l cross curve y = a x 2 y=ax^2 y = a x 2 on points A, B; if O A ⊥ O B OA \bot OB O A ⊥ OB , prove that AB passes a fixed point.
Proof:A : ( x A , a x A 2 ) B : ( x B , a x B 2 ) k O A = a x A k O B = a x B O A ⊥ O B ⇒ k O A k O B = a 2 x A x B = − 1 A B : y − y B = y A − y B x A − x B ( x − x B ) \begin{gather*} A: (x_A, ax_A^2) \quad B: (x_B, ax_B^2)\\ k_{OA} = ax_A \quad k_{OB} = ax_B \\ OA \bot OB \quad \Rightarrow \quad k_{OA}k_{OB} = a^2x_Ax_B = -1 \\ AB: y-y_B = \frac{y_A-y_B}{x_A-x_B}(x-x_B) \\\end{gather*} A : ( x A , a x A 2 ) B : ( x B , a x B 2 ) k O A = a x A k OB = a x B O A ⊥ OB ⇒ k O A k OB = a 2 x A x B = − 1 A B : y − y B = x A − x B y A − y B ( x − x B ) y = y A − y B x A − x B ( x − x B ) + y B = a x A 2 − a x B 2 x A − x B ( x − x B ) + a x B 2 = a ( x A + x B ) ( x − x B ) + a x B 2 = a ( x A + x B ) x − a x A x B = a ( x A + x B ) x + 1 a \begin{align*}y &= \frac{y_A-y_B}{x_A-x_B}(x-x_B) + y_B \\ &= \frac{ax_A^2 - ax_B^2}{x_A - x_B}(x-x_B) + ax_B^2 \\ &= a(x_A+x_B)(x-x_B) + ax_B^2 \\ &= a(x_A+x_B)x - ax_Ax_B \\ &= a(x_A+x_B)x + \frac{1}{a}\end{align*} y = x A − x B y A − y B ( x − x B ) + y B = x A − x B a x A 2 − a x B 2 ( x − x B ) + a x B 2 = a ( x A + x B ) ( x − x B ) + a x B 2 = a ( x A + x B ) x − a x A x B = a ( x A + x B ) x + a 1 Line AB pass ( 0 , 1 / a ) (0, 1/a) ( 0 , 1/ a )
Problem 2.Ellipse x 2 / 3 + y 2 / 2 = 1 x^2/3 + y^2/2 = 1 x 2 /3 + y 2 /2 = 1 has an inscribed quadrilateral ABCD such that AB passes its left focus point E, and AC, BD passes its right point F. Prove that the slope ratio of line AB and CD k A B / k C D k_{AB}/k_{CD} k A B / k C D is a fixed value.
Proof:We transform the x − y x-y x − y plane by: ( x , y ) → ( x / 3 , y / 2 ) (x, y) \rightarrow (x/\sqrt{3}, y/\sqrt{2}) ( x , y ) → ( x / 3 , y / 2 ) , such that the ellipse becomes a unit circle. We find that
k A B k C D = ( y B − y A ) ( x D − x C ) ( x B − x A ) ( y D − y C ) \frac{k_{AB}}{k_{CD}} = \frac{(y_B-y_A)(x_D-x_C)}{(x_B-x_A)(y_D-y_C)} k C D k A B = ( x B − x A ) ( y D − y C ) ( y B − y A ) ( x D − x C ) keeps unchanged after transformation. The original focus points of ellipse are ( − 1 , 0 ) , ( 1 , 0 ) (-1, 0), (1, 0) ( − 1 , 0 ) , ( 1 , 0 ) now becomes ( − 1 / 3 , 0 ) , ( 1 / 3 , 0 ) (-1/\sqrt{3}, 0), (1/\sqrt{3}, 0) ( − 1/ 3 , 0 ) , ( 1/ 3 , 0 ) .
Now we are going to prove that after transformation, the k A B / k C D k_{AB}/k_{CD} k A B / k C D is a fixed value.
x 2 + y 2 = 1 , c = 1 / 3 E : ( − c , 0 ) , F : ( c , 0 ) A : ( x B , y B ) , B : ( x B , y B ) A B : y = k 1 ( x + c ) ( 1 + k 1 2 ) x 2 + 2 k 1 2 c x + k 1 2 c 2 − 1 = 0 x A + x B = − 2 k 1 2 c 1 + k 1 2 x A x B = k 1 2 c 2 − 1 1 + k 1 2 B D : y = k 2 ( x − c ) , x = y / k 2 + c , k 2 = y B / ( x B − c ) ( 1 + k 2 2 ) x 2 − 2 k 2 2 c x + k 2 2 c 2 − 1 = 0 ( 1 + 1 / k 2 2 ) y 2 + 2 c y / k 2 + c 2 − 1 = 0 x B + x D = 2 k 2 2 c 1 + k 2 2 = 2 y B 2 c ( x B − c ) 2 + y B 2 = 2 k 1 2 c ( x B + c ) 2 1 + c 2 − 2 c x B y B + y D = − 2 c / k 2 1 + 1 / k 2 2 = − 2 c k 2 1 + k 2 2 = − 2 c ( x B − c ) y B 1 + c 2 − 2 c x B = − 2 c k 1 ( x B 2 − c 2 ) 1 + c 2 − 2 c x B A C : y = k 3 ( x − c ) , k 3 = y A / ( x A − c ) x A + x C = 2 k 1 2 c ( x A + c ) 2 1 + c 2 − 2 c x A y A + y C = − 2 c k 1 ( x A 2 − c 2 ) 1 + c 2 − 2 c x A k C D = y C − y D x C − x D = y C + y A − ( y B + y D ) + y B − y A x C + x A − ( x B + x D ) + x B − x A \begin{align*} & x^2 + y^2 = 1, c = 1/\sqrt{3}\\ & E:(-c, 0), F:(c, 0) \\ & A:(x_B, y_B), B:(x_B, y_B)\\\\ & AB: y=k_1(x+c)\\ & (1+k_1^2)x^2 + 2k_1^2cx + k_1^2c^2-1=0\\ & x_A + x_B = \frac{-2k_1^2c}{1+k_1^2}\\ & x_Ax_B = \frac{k_1^2c^2-1}{1+k_1^2}\\\\ & BD: y=k_2(x-c), x=y/k_2+c, k_2 = y_B/(x_B-c)\\ & (1+k_2^2)x^2 - 2k_2^2cx + k_2^2c^2-1=0\\ & (1+1/k_2^2)y^2+2cy/k_2+c^2-1=0 \\ & x_B + x_D = \frac{2k_2^2c}{1+k_2^2} = \frac{2y_B^2c}{(x_B-c)^2+y_B^2}=\frac{2k_1^2c(x_B+c)^2}{1+c^2-2cx_B}\\ & y_B + y_D = \frac{-2c/k_2}{1+1/k_2^2} = \frac{-2ck_2}{1+k_2^2} = \frac{-2c(x_B-c)y_B}{1+c^2 - 2cx_B} = \frac{-2ck_1(x_B^2-c^2)}{1+c^2-2cx_B}\\\\ & AC: y=k_3(x-c), k_3 = y_A/(x_A-c)\\ & x_A + x_C = \frac{2k_1^2c(x_A+c)^2}{1+c^2-2cx_A}\\ & y_A + y_C = \frac{-2ck_1(x_A^2-c^2)}{1+c^2-2cx_A}\\\\ & k_{CD} = \frac{y_C-y_D}{x_C - x_D} = \frac{y_C+y_A - (y_B+y_D)+y_B-y_A}{x_C+x_A-(x_B+x_D)+x_B-x_A}\end{align*} x 2 + y 2 = 1 , c = 1/ 3 E : ( − c , 0 ) , F : ( c , 0 ) A : ( x B , y B ) , B : ( x B , y B ) A B : y = k 1 ( x + c ) ( 1 + k 1 2 ) x 2 + 2 k 1 2 c x + k 1 2 c 2 − 1 = 0 x A + x B = 1 + k 1 2 − 2 k 1 2 c x A x B = 1 + k 1 2 k 1 2 c 2 − 1 B D : y = k 2 ( x − c ) , x = y / k 2 + c , k 2 = y B / ( x B − c ) ( 1 + k 2 2 ) x 2 − 2 k 2 2 c x + k 2 2 c 2 − 1 = 0 ( 1 + 1/ k 2 2 ) y 2 + 2 cy / k 2 + c 2 − 1 = 0 x B + x D = 1 + k 2 2 2 k 2 2 c = ( x B − c ) 2 + y B 2 2 y B 2 c = 1 + c 2 − 2 c x B 2 k 1 2 c ( x B + c ) 2 y B + y D = 1 + 1/ k 2 2 − 2 c / k 2 = 1 + k 2 2 − 2 c k 2 = 1 + c 2 − 2 c x B − 2 c ( x B − c ) y B = 1 + c 2 − 2 c x B − 2 c k 1 ( x B 2 − c 2 ) A C : y = k 3 ( x − c ) , k 3 = y A / ( x A − c ) x A + x C = 1 + c 2 − 2 c x A 2 k 1 2 c ( x A + c ) 2 y A + y C = 1 + c 2 − 2 c x A − 2 c k 1 ( x A 2 − c 2 ) k C D = x C − x D y C − y D = x C + x A − ( x B + x D ) + x B − x A y C + y A − ( y B + y D ) + y B − y A y C + y A − ( y B + y D ) + y B − y A = − 2 c k 1 ( x A 2 − c 2 ) 1 + c 2 − 2 c x A − − 2 c k 1 ( x B 2 − c 2 ) 1 + c 2 − 2 c x B + y B − y A = − 2 c k 1 ( x A 2 − c 2 ) ( 1 + c 2 − 2 c x B ) − ( x B 2 − c 2 ) ( 1 + c 2 − 2 c x A ) ( 1 + c 2 − 2 c x A ) ( 1 + c 2 − 2 c x B ) + y B − y A = − 2 c k 1 ( 1 + c 2 ) ( x A 2 − x B 2 ) − 2 c ( x B x A 2 − c 2 x B − x A x B 2 + c 2 x A ) ( 1 + c 2 ) 2 − 2 c ( 1 + c 2 ) ( x A + x B ) + 4 c 2 x A x B + y B − y A = − 2 c k 1 ( x B − x A ) − ( 1 + c 2 ) ( x A + x B ) − 2 c ( − x A x B − c 2 ) ( 1 + c 2 ) 2 − 2 c ( 1 + c 2 ) ( x A + x B ) + 4 c 2 x A x B + y B − y A = k 1 ( x B − x A ) 2 c ( 1 + c 2 ) ( x A + x B ) − 4 c 2 ( x A x B + c 2 ) ( 1 + c 2 ) 2 − 2 c ( 1 + c 2 ) ( x A + x B ) + 4 c 2 x A x B + y B − y A \begin{align*} & y_C+y_A - (y_B+y_D)+y_B-y_A \\ =& \frac{-2ck_1(x_A^2-c^2)}{1+c^2-2cx_A} - \frac{-2ck_1(x_B^2-c^2)}{1+c^2-2cx_B} + y_B - y_A\\ =& -2ck_1\frac{(x_A^2-c^2)(1+c^2-2cx_B)-(x_B^2-c^2)(1+c^2-2cx_A)}{(1+c^2-2cx_A)(1+c^2-2cx_B)} + y_B-y_A\\ =& -2ck_1\frac{(1+c^2)(x_A^2-x_B^2)-2c(x_Bx_A^2-c^2x_B-x_Ax_B^2+c^2x_A)}{(1+c^2)^2-2c(1+c^2)(x_A+x_B)+4c^2x_Ax_B} + y_B -y_A\\ =& -2ck_1(x_B-x_A)\frac{-(1+c^2)(x_A+x_B)-2c(-x_Ax_B-c^2)}{(1+c^2)^2-2c(1+c^2)(x_A+x_B)+4c^2x_Ax_B} + y_B - y_A \\ =& k_1(x_B-x_A)\frac{2c(1+c^2)(x_A+x_B)-4c^2(x_Ax_B+c^2)}{(1+c^2)^2-2c(1+c^2)(x_A+x_B)+4c^2x_Ax_B} + y_B - y_A\end{align*} = = = = = y C + y A − ( y B + y D ) + y B − y A 1 + c 2 − 2 c x A − 2 c k 1 ( x A 2 − c 2 ) − 1 + c 2 − 2 c x B − 2 c k 1 ( x B 2 − c 2 ) + y B − y A − 2 c k 1 ( 1 + c 2 − 2 c x A ) ( 1 + c 2 − 2 c x B ) ( x A 2 − c 2 ) ( 1 + c 2 − 2 c x B ) − ( x B 2 − c 2 ) ( 1 + c 2 − 2 c x A ) + y B − y A − 2 c k 1 ( 1 + c 2 ) 2 − 2 c ( 1 + c 2 ) ( x A + x B ) + 4 c 2 x A x B ( 1 + c 2 ) ( x A 2 − x B 2 ) − 2 c ( x B x A 2 − c 2 x B − x A x B 2 + c 2 x A ) + y B − y A − 2 c k 1 ( x B − x A ) ( 1 + c 2 ) 2 − 2 c ( 1 + c 2 ) ( x A + x B ) + 4 c 2 x A x B − ( 1 + c 2 ) ( x A + x B ) − 2 c ( − x A x B − c 2 ) + y B − y A k 1 ( x B − x A ) ( 1 + c 2 ) 2 − 2 c ( 1 + c 2 ) ( x A + x B ) + 4 c 2 x A x B 2 c ( 1 + c 2 ) ( x A + x B ) − 4 c 2 ( x A x B + c 2 ) + y B − y A x C + x A − ( x B + x D ) + x B − x A = 2 k 1 2 c ( x A + c ) 2 1 + c 2 − 2 c x A − 2 k 1 2 c ( x B + c ) 2 1 + c 2 − 2 c x B + x B − x A = 2 k 1 2 c ( x A + c ) 2 ( 1 + c 2 − 2 c x B ) − ( x B + c ) 2 ( 1 + c 2 − 2 c x A ) ( 1 + c 2 ) 2 − 2 c ( 1 + c 2 ) ( x A + x B ) + 4 c 2 x A x B + x B − x A = 2 k 1 2 c ( 1 + c 2 ) ( x A 2 + 2 c x A − x B 2 − 2 c x B ) − 2 c ( x B x A 2 + c 2 x B − x A x B 2 − c 2 x A 2 ) ( 1 + c 2 ) 2 − 2 c ( 1 + c 2 ) ( x A + x B ) + 4 c 2 x A x B + x B − x A = ( x B − x A ) − 2 c k 1 2 ( 1 + c 2 ) ( x A + x B + 2 c ) + 4 c 2 k 1 2 ( x A x B − c 2 ) ( 1 + c 2 ) 2 − 2 c ( 1 + c 2 ) ( x A + x B ) + 4 c 2 x A x B + x B − x A \begin{align*}& x_C+x_A-(x_B+x_D)+x_B-x_A \\=& \frac{2k_1^2c(x_A+c)^2}{1+c^2-2cx_A} - \frac{2k_1^2c(x_B+c)^2}{1+c^2-2cx_B} + x_B - x_A\\=& 2k_1^2c\frac{(x_A+c)^2(1+c^2-2cx_B)-(x_B+c)^2(1+c^2-2cx_A)}{(1+c^2)^2-2c(1+c^2)(x_A+x_B)+4c^2x_Ax_B} +x_B - x_A\\=& 2k_1^2c\frac{(1+c^2)(x_A^2+2cx_A-x_B^2-2cx_B) -2c(x_Bx_A^2+c^2x_B-x_Ax_B^2-c^2x_A^2)}{(1+c^2)^2-2c(1+c^2)(x_A+x_B)+4c^2x_Ax_B} + x_B-x_A\\=& (x_B-x_A) \frac{-2ck_1^2(1+c^2)(x_A+x_B+2c) + 4c^2k_1^2(x_Ax_B-c^2)}{(1+c^2)^2-2c(1+c^2)(x_A+x_B)+4c^2x_Ax_B} + x_B - x_A\\\end{align*} = = = = x C + x A − ( x B + x D ) + x B − x A 1 + c 2 − 2 c x A 2 k 1 2 c ( x A + c ) 2 − 1 + c 2 − 2 c x B 2 k 1 2 c ( x B + c ) 2 + x B − x A 2 k 1 2 c ( 1 + c 2 ) 2 − 2 c ( 1 + c 2 ) ( x A + x B ) + 4 c 2 x A x B ( x A + c ) 2 ( 1 + c 2 − 2 c x B ) − ( x B + c ) 2 ( 1 + c 2 − 2 c x A ) + x B − x A 2 k 1 2 c ( 1 + c 2 ) 2 − 2 c ( 1 + c 2 ) ( x A + x B ) + 4 c 2 x A x B ( 1 + c 2 ) ( x A 2 + 2 c x A − x B 2 − 2 c x B ) − 2 c ( x B x A 2 + c 2 x B − x A x B 2 − c 2 x A 2 ) + x B − x A ( x B − x A ) ( 1 + c 2 ) 2 − 2 c ( 1 + c 2 ) ( x A + x B ) + 4 c 2 x A x B − 2 c k 1 2 ( 1 + c 2 ) ( x A + x B + 2 c ) + 4 c 2 k 1 2 ( x A x B − c 2 ) + x B − x A k C D = y C + y A − ( y B + y D ) + y B − y A x C + x A − ( x B + x D ) + x B − x A = k 1 ( x B − x A ) 2 c ( 1 + c 2 ) ( x A + x B ) − 4 c 2 ( x A x B + c 2 ) ( 1 + c 2 ) 2 − 2 c ( 1 + c 2 ) ( x A + x B ) + 4 c 2 x A x B + y B − y A ( x B − x A ) − 2 c k 1 2 ( 1 + c 2 ) ( x A + x B + 2 c ) + 4 c 2 k 1 2 ( x A x B − c 2 ) ( 1 + c 2 ) 2 − 2 c ( 1 + c 2 ) ( x A + x B ) + 4 c 2 x A x B + x B − x A = k 1 2 c ( 1 + c 2 ) ( x A + x B ) − 4 c 2 ( x A x B + c 2 ) + P − 2 c k 1 2 ( 1 + c 2 ) ( x A + x B + 2 c ) + 4 c 2 k 1 2 ( x A x B − c 2 ) + P = k 1 − 4 c 2 ( 1 + c 2 ) k 1 2 − 4 c 2 ( 2 k 1 2 c 2 + c 2 − 1 ) + P ( k 1 2 + 1 ) − 2 c k 1 2 ( 1 + c 2 ) ( 2 c ) − 4 c 2 k 1 2 ( c 2 + 1 ) + P ( k 1 2 + 1 ) = k 1 − 16 k 1 2 − 8 ( k 1 2 − 1 ) + 36 k 1 2 + 4 − 16 k 1 2 − 16 k 1 2 + 36 k 1 2 + 4 = k 1 12 k 1 2 + 12 4 k 1 2 + 4 = 3 k 1 = 3 k A B \begin{align*}k_{CD} &= \frac{y_C+y_A - (y_B+y_D)+y_B-y_A}{x_C+x_A-(x_B+x_D)+x_B-x_A} \\&= \frac{k_1(x_B-x_A)\frac{2c(1+c^2)(x_A+x_B)-4c^2(x_Ax_B+c^2)}{(1+c^2)^2-2c(1+c^2)(x_A+x_B)+4c^2x_Ax_B} + y_B - y_A}{(x_B-x_A) \frac{-2ck_1^2(1+c^2)(x_A+x_B+2c) + 4c^2k_1^2(x_Ax_B-c^2)}{(1+c^2)^2-2c(1+c^2)(x_A+x_B)+4c^2x_Ax_B} + x_B - x_A} \\&= k_1\frac{2c(1+c^2)(x_A+x_B)-4c^2(x_Ax_B+c^2)+P}{-2ck_1^2(1+c^2)(x_A+x_B+2c)+4c^2k_1^2(x_Ax_B-c^2)+P}\\&= k_1\frac{-4c^2(1+c^2)k_1^2-4c^2(2k_1^2c^2+c^2-1)+P(k_1^2+1)}{-2ck_1^2(1+c^2)(2c)-4c^2k_1^2(c^2+1)+P(k_1^2+1)}\\&= k_1\frac{-16k_1^2-8(k_1^2-1)+36k_1^2+4}{-16k_1^2-16k_1^2+36k_1^2+4}\\&= k_1\frac{12k_1^2+12}{4k_1^2+4}\\&= 3k_1 \\&= 3k_{AB}\end{align*} k C D = x C + x A − ( x B + x D ) + x B − x A y C + y A − ( y B + y D ) + y B − y A = ( x B − x A ) ( 1 + c 2 ) 2 − 2 c ( 1 + c 2 ) ( x A + x B ) + 4 c 2 x A x B − 2 c k 1 2 ( 1 + c 2 ) ( x A + x B + 2 c ) + 4 c 2 k 1 2 ( x A x B − c 2 ) + x B − x A k 1 ( x B − x A ) ( 1 + c 2 ) 2 − 2 c ( 1 + c 2 ) ( x A + x B ) + 4 c 2 x A x B 2 c ( 1 + c 2 ) ( x A + x B ) − 4 c 2 ( x A x B + c 2 ) + y B − y A = k 1 − 2 c k 1 2 ( 1 + c 2 ) ( x A + x B + 2 c ) + 4 c 2 k 1 2 ( x A x B − c 2 ) + P 2 c ( 1 + c 2 ) ( x A + x B ) − 4 c 2 ( x A x B + c 2 ) + P = k 1 − 2 c k 1 2 ( 1 + c 2 ) ( 2 c ) − 4 c 2 k 1 2 ( c 2 + 1 ) + P ( k 1 2 + 1 ) − 4 c 2 ( 1 + c 2 ) k 1 2 − 4 c 2 ( 2 k 1 2 c 2 + c 2 − 1 ) + P ( k 1 2 + 1 ) = k 1 − 16 k 1 2 − 16 k 1 2 + 36 k 1 2 + 4 − 16 k 1 2 − 8 ( k 1 2 − 1 ) + 36 k 1 2 + 4 = k 1 4 k 1 2 + 4 12 k 1 2 + 12 = 3 k 1 = 3 k A B k C D k A B = − 4 c 2 ( 1 + c 2 ) k 1 2 − 4 c 2 ( 2 k 1 2 c 2 + c 2 − 1 ) + ( k 1 2 + 1 ) ( 1 + c 2 ) 2 + 4 c 2 k 1 2 ( 1 + c 2 ) + 4 c 2 ( k 1 2 c 2 − 1 ) − 8 c 2 k 1 2 ( 1 + c 2 ) + ( k 1 2 + 1 ) ( 1 + c 2 ) 2 + 4 c 2 k 1 2 ( 1 + c 2 ) + 4 c 2 ( k 1 2 c 2 − 1 ) = ( − 4 c 2 − 4 c 4 − 8 c 4 + ( 1 + c 2 ) 2 + 4 c 4 + 4 c 2 + 4 c 4 ) k 1 2 − 4 c 2 ( c 2 − 1 ) + ( 1 + c 2 ) 2 − 4 c 2 ( − 8 c 2 − 8 c 4 + ( 1 + c 2 ) 2 + 4 c 4 + 4 c 2 + 4 c 4 ) k 1 2 + ( 1 + c 2 ) 2 − 4 c 2 = ( − 3 c 4 + 2 c 2 + 1 ) k 1 2 − 3 c 4 + 2 c 2 + 1 ( c 4 − 2 c 2 + 1 ) k 1 2 + c 4 − 2 c 2 + 1 = − ( 3 c 2 + 1 ) ( c 2 − 1 ) ( c 2 − 1 ) 2 = 1 + 3 c 2 1 − c 2 \begin{align*} \frac{k_{CD}}{k_{AB}} =& \frac{-4c^2(1+c^2)k_1^2-4c^2(2k_1^2c^2+c^2-1)+(k_1^2+1)(1+c^2)^2+4c^2k_1^2(1+c^2)+4c^2(k_1^2c^2-1)}{-8c^2k_1^2(1+c^2)+(k_1^2+1)(1+c^2)^2+4c^2k_1^2(1+c^2)+4c^2(k_1^2c^2-1)} \\ =& \frac{(-4c^2-4c^4-8c^4+(1+c^2)^2+4c^4+4c^2+4c^4)k_1^2-4c^2(c^2-1)+(1+c^2)^2-4c^2}{(-8c^2-8c^4+(1+c^2)^2+4c^4+4c^2+4c^4)k_1^2+(1+c^2)^2-4c^2} \\ =& \frac{(-3c^4+2c^2+1)k_1^2-3c^4+2c^2+1}{(c^4-2c^2+1)k_1^2+c^4-2c^2+1} \\ =& \frac{-(3c^2+1)(c^2-1)}{(c^2-1)^2} \\ =& \frac{1+3c^2}{1-c^2}\end{align*} k A B k C D = = = = = − 8 c 2 k 1 2 ( 1 + c 2 ) + ( k 1 2 + 1 ) ( 1 + c 2 ) 2 + 4 c 2 k 1 2 ( 1 + c 2 ) + 4 c 2 ( k 1 2 c 2 − 1 ) − 4 c 2 ( 1 + c 2 ) k 1 2 − 4 c 2 ( 2 k 1 2 c 2 + c 2 − 1 ) + ( k 1 2 + 1 ) ( 1 + c 2 ) 2 + 4 c 2 k 1 2 ( 1 + c 2 ) + 4 c 2 ( k 1 2 c 2 − 1 ) ( − 8 c 2 − 8 c 4 + ( 1 + c 2 ) 2 + 4 c 4 + 4 c 2 + 4 c 4 ) k 1 2 + ( 1 + c 2 ) 2 − 4 c 2 ( − 4 c 2 − 4 c 4 − 8 c 4 + ( 1 + c 2 ) 2 + 4 c 4 + 4 c 2 + 4 c 4 ) k 1 2 − 4 c 2 ( c 2 − 1 ) + ( 1 + c 2 ) 2 − 4 c 2 ( c 4 − 2 c 2 + 1 ) k 1 2 + c 4 − 2 c 2 + 1 ( − 3 c 4 + 2 c 2 + 1 ) k 1 2 − 3 c 4 + 2 c 2 + 1 ( c 2 − 1 ) 2 − ( 3 c 2 + 1 ) ( c 2 − 1 ) 1 − c 2 1 + 3 c 2 Problem 3.Ellipse x 2 / 3 + y 2 / 2 = 1 x^2/3 + y^2/2 = 1 x 2 /3 + y 2 /2 = 1 intersects line l l l on points P ( x p , y p ) , Q ( x q , y q ) P(x_p, y_p), Q(x_q, y_q) P ( x p , y p ) , Q ( x q , y q ) such that the area of △ O P Q \triangle OPQ △ OPQ is 6 / 2 \sqrt{6}/2 6 /2 , or S △ O P Q = 6 / 2 S_{\triangle OPQ} = \sqrt{6}/2 S △ OPQ = 6 /2 .
Prove x p 2 + x q 2 x_p^2 + x_q^2 x p 2 + x q 2 and y p 2 + y q 2 y_p^2 + y_q^2 y p 2 + y q 2 are fixed values Let M M M be the midpoint of P Q PQ PQ , find maximum value of ∣ O M ∣ ⋅ ∣ P Q ∣ |OM|\cdot|PQ| ∣ OM ∣ ⋅ ∣ PQ ∣ Let △ D E G \triangle DEG △ D EG inscribes on the ellipse such that S △ O D E = S △ O E G = S △ O G D = 6 / 2 S_{\triangle ODE} = S_{\triangle OEG} = S_{\triangle OGD} = \sqrt{6}/2 S △ O D E = S △ OEG = S △ OG D = 6 /2 , check the existence of △ D E G \triangle DEG △ D EG and its shape if it exists. Solution:We transform the x − y x-y x − y plane by: ( x , y ) → ( x / 3 , y / 2 ) (x, y) \rightarrow (x/\sqrt{3}, y/\sqrt{2}) ( x , y ) → ( x / 3 , y / 2 ) , such that the ellipse becomes a unit circle. Since, S △ O P Q = 1 2 ( ∣ x Q ∣ − ∣ x P ∣ ) ( ∣ y Q ∣ + ∣ y P ∣ ) S_{\triangle OPQ} = \frac{1}{2}(|x_Q|-|x_P|)(|y_Q|+|y_P|) S △ OPQ = 2 1 ( ∣ x Q ∣ − ∣ x P ∣ ) ( ∣ y Q ∣ + ∣ y P ∣ ) or S △ O P Q = 1 2 ( ∣ x Q ∣ + ∣ x P ∣ ) ( ∣ y Q ∣ − ∣ y P ∣ ) S_{\triangle OPQ}=\frac{1}{2}(|x_Q|+|x_P|)(|y_Q|-|y_P|) S △ OPQ = 2 1 ( ∣ x Q ∣ + ∣ x P ∣ ) ( ∣ y Q ∣ − ∣ y P ∣ ) , S △ O P Q → S △ O P Q / 6 S_{\triangle OPQ} \rightarrow S_{\triangle OPQ}/\sqrt{6} S △ OPQ → S △ OPQ / 6 , which means after transformation S △ O P Q = 1 / 2 S_{\triangle OPQ} = 1/2 S △ OPQ = 1/2 .
We found that S △ O P Q = sin ∠ P O Q / 2 = 1 / 2 S_{\triangle OPQ} = \sin \angle POQ /2 = 1/2 S △ OPQ = sin ∠ POQ /2 = 1/2 , therefore sin ∠ P O Q = 1 \sin\angle POQ = 1 sin ∠ POQ = 1 , which means O P ⊥ O Q OP\bot OQ OP ⊥ OQ .
We can set P ( cos α , sin α ) , Q ( − sin α , cos α ) P(\cos \alpha, \sin \alpha), Q(-\sin \alpha, \cos \alpha) P ( cos α , sin α ) , Q ( − sin α , cos α ) as they are on unit circle after transformation.
Solution 3.1:We can see that the value of x p 2 + x q 2 = cos 2 α + sin 2 α = 1 x_p^2 + x_q^2 = \cos^2\alpha + \sin^2\alpha = 1 x p 2 + x q 2 = cos 2 α + sin 2 α = 1 is 1 / 3 1/3 1/3 of its original and y p 2 + y q 2 = sin 2 α + cos 2 α = 1 y_p^2+y_q^2 = \sin^2\alpha + \cos^2\alpha=1 y p 2 + y q 2 = sin 2 α + cos 2 α = 1 is 1 / 2 1/2 1/2 of its original. Therefore on original ellipse,
x p 2 + x q 2 = 3 , y p 2 + y q 2 = 2 x_p^2 + x_q^2 = 3, \quad y_p^2+y_q^2=2 x p 2 + x q 2 = 3 , y p 2 + y q 2 = 2 Solution 3.2:The original points on ellipse are P ( 3 cos α , 2 sin α ) , Q ( − 3 sin α , 2 cos α ) P(\sqrt{3}\cos\alpha, \sqrt{2}\sin\alpha), Q(-\sqrt{3}\sin\alpha, \sqrt{2}\cos\alpha) P ( 3 cos α , 2 sin α ) , Q ( − 3 sin α , 2 cos α ) , therefore the original value
∣ O M ∣ 2 ⋅ ∣ P Q ∣ 2 = ( 3 ( cos α − sin α 2 ) 2 + 2 ( sin α + cos α 2 ) 2 ) ( 3 ( cos α + sin α ) 2 + 2 ( sin α − cos α ) 2 ) = 1 4 ( 3 − 6 cos α sin α + 2 + 4 cos α sin α ) ( 3 + 6 cos α sin α + 2 − 4 cos α sin α ) = 1 4 ( 5 − sin 2 α ) ( 5 + sin 2 α ) = 1 4 ( 25 − sin 2 2 α ) ≤ 25 4 \begin{align*} |OM|^2\cdot|PQ|^2 &= (3(\frac{\cos\alpha - \sin\alpha}{2})^2+2(\frac{\sin\alpha + \cos\alpha}{2})^2)(3(\cos\alpha+\sin\alpha)^2+2(\sin\alpha-\cos\alpha)^2)\\ &= \frac{1}{4}(3-6\cos\alpha\sin\alpha+2+4\cos\alpha\sin\alpha)(3+6\cos\alpha\sin\alpha+2-4\cos\alpha\sin\alpha) \\ &= \frac{1}{4}(5-\sin2\alpha)(5+\sin2\alpha) \\ &= \frac{1}{4}(25-\sin^22\alpha) \leq \frac{25}{4}\end{align*} ∣ OM ∣ 2 ⋅ ∣ PQ ∣ 2 = ( 3 ( 2 cos α − sin α ) 2 + 2 ( 2 sin α + cos α ) 2 ) ( 3 ( cos α + sin α ) 2 + 2 ( sin α − cos α ) 2 ) = 4 1 ( 3 − 6 cos α sin α + 2 + 4 cos α sin α ) ( 3 + 6 cos α sin α + 2 − 4 cos α sin α ) = 4 1 ( 5 − sin 2 α ) ( 5 + sin 2 α ) = 4 1 ( 25 − sin 2 2 α ) ≤ 4 25 Therefore the maximum value of ∣ O M ∣ ⋅ ∣ P Q ∣ |OM|\cdot |PQ| ∣ OM ∣ ⋅ ∣ PQ ∣ is 5 / 2 5/2 5/2 .
Solution 3.3:If S △ O D E = S △ O E G = S △ O G D = 6 / 2 S_{\triangle ODE} = S_{\triangle OEG} = S_{\triangle OGD} = \sqrt{6}/2 S △ O D E = S △ OEG = S △ OG D = 6 /2 , then O D ⊥ O E , O E ⊥ O G , O D ⊥ O G OD \bot OE, OE \bot OG, OD \bot OG O D ⊥ OE , OE ⊥ OG , O D ⊥ OG , which is not possible on x y xy x y plane, therefore △ D E G \triangle DEG △ D EG does not exists.
Problem 4.A circle O O O has an inscribed triangle △ A B C \triangle ABC △ A BC such that A B > B C AB > BC A B > BC . Let E E E be the midpoint of arc A C ⌢ \overset{\frown}{AC} A C ⌢ , E F ⊥ A B EF \perp AB EF ⊥ A B on F. Prove ∣ A F ∣ = ∣ F B ∣ + ∣ B C ∣ |AF| = |FB| + |BC| ∣ A F ∣ = ∣ FB ∣ + ∣ BC ∣ .
Proof:Let circle's radius be r r r , and
A : ( r cos α , r sin α ) B : ( r cos β , r sin β ) C : ( r , 0 ) π > α − β > β > 0 \begin{align*} & A:(r\cos\alpha, r\sin\alpha) \\ & B:(r\cos\beta, r\sin\beta) \\ & C:(r, 0) \\ & \pi > \alpha - \beta > \beta > 0 \\\end{align*} A : ( r cos α , r sin α ) B : ( r cos β , r sin β ) C : ( r , 0 ) π > α − β > β > 0 Then:
E : ( r cos α / 2 , r sin α / 2 ) ∣ B C ∣ = 2 r sin β 2 ∣ A B ∣ = 2 r sin α − β 2 ∣ E B ∣ = 2 r sin α − 2 β 4 ∣ A E ∣ = 2 r sin α 4 ∣ B F ∣ = ∣ E B ∣ cos ∠ E B A cos ∠ E B A = ∣ E B ∣ 2 + ∣ B A ∣ 2 − ∣ E A ∣ 2 2 ∣ E B ∣ ∣ A B ∣ ∣ A F ∣ = ∣ F B ∣ + ∣ B C ∣ ⇔ ∣ A B ∣ = 2 ∣ B F ∣ + ∣ B C ∣ ⇔ cos ∠ E B A = ∣ A B ∣ − ∣ B C ∣ 2 ∣ B E ∣ ⇔ cos ∠ E B A = ∣ E B ∣ 2 + ∣ B A ∣ 2 − ∣ E A ∣ 2 2 ∣ E B ∣ ∣ A B ∣ = ∣ A B ∣ − ∣ B C ∣ 2 ∣ E B ∣ ⇔ ∣ E B ∣ 2 + ∣ B A ∣ 2 − ∣ E A ∣ 2 = ∣ A B ∣ ( ∣ A B ∣ − ∣ B C ∣ ) ⇔ ∣ E B ∣ 2 + ∣ A B ∣ ∣ B C ∣ = ∣ E A ∣ 2 ⇔ sin 2 α − 2 β 4 + sin α − β 2 sin β 2 = sin 2 α 4 ⇔ 1 − cos α − 2 β 2 − cos α 2 + cos α − 2 β 2 = 1 − cos α 2 ⇔ 0 = 0 \begin{align*} & E:(r\cos\alpha/2, r\sin\alpha/2) \\ & |BC| = 2r\sin\frac{\beta}{2} \\ & |AB| = 2r\sin\frac{\alpha-\beta}{2} \\ & |EB| = 2r\sin\frac{\alpha-2\beta}{4} \\ & |AE| = 2r\sin\frac{\alpha}{4} \\ & |BF| = |EB| \cos\angle EBA \\ & \cos\angle EBA = \frac{|EB|^2 + |BA|^2-|EA|^2}{2|EB||AB|} \\ & |AF| = |FB| + |BC| \Leftrightarrow |AB| = 2|BF| + |BC| \Leftrightarrow \cos\angle EBA = \frac{|AB| - |BC|}{2|BE|} \\ & \Leftrightarrow \cos\angle EBA = \frac{|EB|^2 + |BA|^2-|EA|^2}{2|EB||AB|} = \frac{|AB| - |BC|}{2|EB|} \\ & \Leftrightarrow |EB|^2 + |BA|^2-|EA|^2 = |AB|(|AB|-|BC|) \\ & \Leftrightarrow |EB|^2 + |AB||BC| = |EA|^2 \\ & \Leftrightarrow \sin^2\frac{\alpha-2\beta}{4} + \sin\frac{\alpha-\beta}{2}\sin\frac{\beta}{2} = \sin^2\frac{\alpha}{4}\\ & \Leftrightarrow 1 - \cos\frac{\alpha-2\beta}{2} - \cos\frac{\alpha}{2}+\cos\frac{\alpha-2\beta}{2} = 1 - \cos\frac{\alpha}{2} \\ & \Leftrightarrow 0 = 0\end{align*} E : ( r cos α /2 , r sin α /2 ) ∣ BC ∣ = 2 r sin 2 β ∣ A B ∣ = 2 r sin 2 α − β ∣ EB ∣ = 2 r sin 4 α − 2 β ∣ A E ∣ = 2 r sin 4 α ∣ BF ∣ = ∣ EB ∣ cos ∠ EB A cos ∠ EB A = 2∣ EB ∣∣ A B ∣ ∣ EB ∣ 2 + ∣ B A ∣ 2 − ∣ E A ∣ 2 ∣ A F ∣ = ∣ FB ∣ + ∣ BC ∣ ⇔ ∣ A B ∣ = 2∣ BF ∣ + ∣ BC ∣ ⇔ cos ∠ EB A = 2∣ BE ∣ ∣ A B ∣ − ∣ BC ∣ ⇔ cos ∠ EB A = 2∣ EB ∣∣ A B ∣ ∣ EB ∣ 2 + ∣ B A ∣ 2 − ∣ E A ∣ 2 = 2∣ EB ∣ ∣ A B ∣ − ∣ BC ∣ ⇔ ∣ EB ∣ 2 + ∣ B A ∣ 2 − ∣ E A ∣ 2 = ∣ A B ∣ ( ∣ A B ∣ − ∣ BC ∣ ) ⇔ ∣ EB ∣ 2 + ∣ A B ∣∣ BC ∣ = ∣ E A ∣ 2 ⇔ sin 2 4 α − 2 β + sin 2 α − β sin 2 β = sin 2 4 α ⇔ 1 − cos 2 α − 2 β − cos 2 α + cos 2 α − 2 β = 1 − cos 2 α ⇔ 0 = 0