Published on

解析几何 Cartesian Geometry

Authors

最近真的是闲的,一连做了好几道解析几何的题目。这个年纪回过头去看这种当时极为头疼的东西,发现这种题其实不需要太多脑子,弄清套路之后,就是纯体力活儿。

Problem 1.

Line ll cross curve y=ax2y=ax^2 on points A, B; if OAOBOA \bot OB, prove that AB passes a fixed point.

Proof:

A:(xA,axA2)B:(xB,axB2)kOA=axAkOB=axBOAOBkOAkOB=a2xAxB=1AB:yyB=yAyBxAxB(xxB)\begin{gather*} A: (x_A, ax_A^2) \quad B: (x_B, ax_B^2)\\ k_{OA} = ax_A \quad k_{OB} = ax_B \\ OA \bot OB \quad \Rightarrow \quad k_{OA}k_{OB} = a^2x_Ax_B = -1 \\ AB: y-y_B = \frac{y_A-y_B}{x_A-x_B}(x-x_B) \\\end{gather*}
y=yAyBxAxB(xxB)+yB=axA2axB2xAxB(xxB)+axB2=a(xA+xB)(xxB)+axB2=a(xA+xB)xaxAxB=a(xA+xB)x+1a\begin{align*}y &= \frac{y_A-y_B}{x_A-x_B}(x-x_B) + y_B \\ &= \frac{ax_A^2 - ax_B^2}{x_A - x_B}(x-x_B) + ax_B^2 \\ &= a(x_A+x_B)(x-x_B) + ax_B^2 \\ &= a(x_A+x_B)x - ax_Ax_B \\ &= a(x_A+x_B)x + \frac{1}{a}\end{align*}

Line AB pass (0,1/a)(0, 1/a)

Problem 2.

Ellipse x2/3+y2/2=1x^2/3 + y^2/2 = 1 has an inscribed quadrilateral ABCD such that AB passes its left focus point E, and AC, BD passes its right point F. Prove that the slope ratio of line AB and CD kAB/kCDk_{AB}/k_{CD} is a fixed value.

Proof:

We transform the xyx-y plane by: (x,y)(x/3,y/2)(x, y) \rightarrow (x/\sqrt{3}, y/\sqrt{2}), such that the ellipse becomes a unit circle. We find that

kABkCD=(yByA)(xDxC)(xBxA)(yDyC)\frac{k_{AB}}{k_{CD}} = \frac{(y_B-y_A)(x_D-x_C)}{(x_B-x_A)(y_D-y_C)}

keeps unchanged after transformation. The original focus points of ellipse are (1,0),(1,0)(-1, 0), (1, 0) now becomes (1/3,0),(1/3,0)(-1/\sqrt{3}, 0), (1/\sqrt{3}, 0).

Now we are going to prove that after transformation, the kAB/kCDk_{AB}/k_{CD} is a fixed value.

x2+y2=1,c=1/3E:(c,0),F:(c,0)A:(xB,yB),B:(xB,yB)AB:y=k1(x+c)(1+k12)x2+2k12cx+k12c21=0xA+xB=2k12c1+k12xAxB=k12c211+k12BD:y=k2(xc),x=y/k2+c,k2=yB/(xBc)(1+k22)x22k22cx+k22c21=0(1+1/k22)y2+2cy/k2+c21=0xB+xD=2k22c1+k22=2yB2c(xBc)2+yB2=2k12c(xB+c)21+c22cxByB+yD=2c/k21+1/k22=2ck21+k22=2c(xBc)yB1+c22cxB=2ck1(xB2c2)1+c22cxBAC:y=k3(xc),k3=yA/(xAc)xA+xC=2k12c(xA+c)21+c22cxAyA+yC=2ck1(xA2c2)1+c22cxAkCD=yCyDxCxD=yC+yA(yB+yD)+yByAxC+xA(xB+xD)+xBxA\begin{align*} & x^2 + y^2 = 1, c = 1/\sqrt{3}\\ & E:(-c, 0), F:(c, 0) \\ & A:(x_B, y_B), B:(x_B, y_B)\\\\ & AB: y=k_1(x+c)\\ & (1+k_1^2)x^2 + 2k_1^2cx + k_1^2c^2-1=0\\ & x_A + x_B = \frac{-2k_1^2c}{1+k_1^2}\\ & x_Ax_B = \frac{k_1^2c^2-1}{1+k_1^2}\\\\ & BD: y=k_2(x-c), x=y/k_2+c, k_2 = y_B/(x_B-c)\\ & (1+k_2^2)x^2 - 2k_2^2cx + k_2^2c^2-1=0\\ & (1+1/k_2^2)y^2+2cy/k_2+c^2-1=0 \\ & x_B + x_D = \frac{2k_2^2c}{1+k_2^2} = \frac{2y_B^2c}{(x_B-c)^2+y_B^2}=\frac{2k_1^2c(x_B+c)^2}{1+c^2-2cx_B}\\ & y_B + y_D = \frac{-2c/k_2}{1+1/k_2^2} = \frac{-2ck_2}{1+k_2^2} = \frac{-2c(x_B-c)y_B}{1+c^2 - 2cx_B} = \frac{-2ck_1(x_B^2-c^2)}{1+c^2-2cx_B}\\\\ & AC: y=k_3(x-c), k_3 = y_A/(x_A-c)\\ & x_A + x_C = \frac{2k_1^2c(x_A+c)^2}{1+c^2-2cx_A}\\ & y_A + y_C = \frac{-2ck_1(x_A^2-c^2)}{1+c^2-2cx_A}\\\\ & k_{CD} = \frac{y_C-y_D}{x_C - x_D} = \frac{y_C+y_A - (y_B+y_D)+y_B-y_A}{x_C+x_A-(x_B+x_D)+x_B-x_A}\end{align*}
yC+yA(yB+yD)+yByA=2ck1(xA2c2)1+c22cxA2ck1(xB2c2)1+c22cxB+yByA=2ck1(xA2c2)(1+c22cxB)(xB2c2)(1+c22cxA)(1+c22cxA)(1+c22cxB)+yByA=2ck1(1+c2)(xA2xB2)2c(xBxA2c2xBxAxB2+c2xA)(1+c2)22c(1+c2)(xA+xB)+4c2xAxB+yByA=2ck1(xBxA)(1+c2)(xA+xB)2c(xAxBc2)(1+c2)22c(1+c2)(xA+xB)+4c2xAxB+yByA=k1(xBxA)2c(1+c2)(xA+xB)4c2(xAxB+c2)(1+c2)22c(1+c2)(xA+xB)+4c2xAxB+yByA\begin{align*} & y_C+y_A - (y_B+y_D)+y_B-y_A \\ =& \frac{-2ck_1(x_A^2-c^2)}{1+c^2-2cx_A} - \frac{-2ck_1(x_B^2-c^2)}{1+c^2-2cx_B} + y_B - y_A\\ =& -2ck_1\frac{(x_A^2-c^2)(1+c^2-2cx_B)-(x_B^2-c^2)(1+c^2-2cx_A)}{(1+c^2-2cx_A)(1+c^2-2cx_B)} + y_B-y_A\\ =& -2ck_1\frac{(1+c^2)(x_A^2-x_B^2)-2c(x_Bx_A^2-c^2x_B-x_Ax_B^2+c^2x_A)}{(1+c^2)^2-2c(1+c^2)(x_A+x_B)+4c^2x_Ax_B} + y_B -y_A\\ =& -2ck_1(x_B-x_A)\frac{-(1+c^2)(x_A+x_B)-2c(-x_Ax_B-c^2)}{(1+c^2)^2-2c(1+c^2)(x_A+x_B)+4c^2x_Ax_B} + y_B - y_A \\ =& k_1(x_B-x_A)\frac{2c(1+c^2)(x_A+x_B)-4c^2(x_Ax_B+c^2)}{(1+c^2)^2-2c(1+c^2)(x_A+x_B)+4c^2x_Ax_B} + y_B - y_A\end{align*}
xC+xA(xB+xD)+xBxA=2k12c(xA+c)21+c22cxA2k12c(xB+c)21+c22cxB+xBxA=2k12c(xA+c)2(1+c22cxB)(xB+c)2(1+c22cxA)(1+c2)22c(1+c2)(xA+xB)+4c2xAxB+xBxA=2k12c(1+c2)(xA2+2cxAxB22cxB)2c(xBxA2+c2xBxAxB2c2xA2)(1+c2)22c(1+c2)(xA+xB)+4c2xAxB+xBxA=(xBxA)2ck12(1+c2)(xA+xB+2c)+4c2k12(xAxBc2)(1+c2)22c(1+c2)(xA+xB)+4c2xAxB+xBxA\begin{align*}& x_C+x_A-(x_B+x_D)+x_B-x_A \\=& \frac{2k_1^2c(x_A+c)^2}{1+c^2-2cx_A} - \frac{2k_1^2c(x_B+c)^2}{1+c^2-2cx_B} + x_B - x_A\\=& 2k_1^2c\frac{(x_A+c)^2(1+c^2-2cx_B)-(x_B+c)^2(1+c^2-2cx_A)}{(1+c^2)^2-2c(1+c^2)(x_A+x_B)+4c^2x_Ax_B} +x_B - x_A\\=& 2k_1^2c\frac{(1+c^2)(x_A^2+2cx_A-x_B^2-2cx_B) -2c(x_Bx_A^2+c^2x_B-x_Ax_B^2-c^2x_A^2)}{(1+c^2)^2-2c(1+c^2)(x_A+x_B)+4c^2x_Ax_B} + x_B-x_A\\=& (x_B-x_A) \frac{-2ck_1^2(1+c^2)(x_A+x_B+2c) + 4c^2k_1^2(x_Ax_B-c^2)}{(1+c^2)^2-2c(1+c^2)(x_A+x_B)+4c^2x_Ax_B} + x_B - x_A\\\end{align*}
kCD=yC+yA(yB+yD)+yByAxC+xA(xB+xD)+xBxA=k1(xBxA)2c(1+c2)(xA+xB)4c2(xAxB+c2)(1+c2)22c(1+c2)(xA+xB)+4c2xAxB+yByA(xBxA)2ck12(1+c2)(xA+xB+2c)+4c2k12(xAxBc2)(1+c2)22c(1+c2)(xA+xB)+4c2xAxB+xBxA=k12c(1+c2)(xA+xB)4c2(xAxB+c2)+P2ck12(1+c2)(xA+xB+2c)+4c2k12(xAxBc2)+P=k14c2(1+c2)k124c2(2k12c2+c21)+P(k12+1)2ck12(1+c2)(2c)4c2k12(c2+1)+P(k12+1)=k116k128(k121)+36k12+416k1216k12+36k12+4=k112k12+124k12+4=3k1=3kAB\begin{align*}k_{CD} &= \frac{y_C+y_A - (y_B+y_D)+y_B-y_A}{x_C+x_A-(x_B+x_D)+x_B-x_A} \\&= \frac{k_1(x_B-x_A)\frac{2c(1+c^2)(x_A+x_B)-4c^2(x_Ax_B+c^2)}{(1+c^2)^2-2c(1+c^2)(x_A+x_B)+4c^2x_Ax_B} + y_B - y_A}{(x_B-x_A) \frac{-2ck_1^2(1+c^2)(x_A+x_B+2c) + 4c^2k_1^2(x_Ax_B-c^2)}{(1+c^2)^2-2c(1+c^2)(x_A+x_B)+4c^2x_Ax_B} + x_B - x_A} \\&= k_1\frac{2c(1+c^2)(x_A+x_B)-4c^2(x_Ax_B+c^2)+P}{-2ck_1^2(1+c^2)(x_A+x_B+2c)+4c^2k_1^2(x_Ax_B-c^2)+P}\\&= k_1\frac{-4c^2(1+c^2)k_1^2-4c^2(2k_1^2c^2+c^2-1)+P(k_1^2+1)}{-2ck_1^2(1+c^2)(2c)-4c^2k_1^2(c^2+1)+P(k_1^2+1)}\\&= k_1\frac{-16k_1^2-8(k_1^2-1)+36k_1^2+4}{-16k_1^2-16k_1^2+36k_1^2+4}\\&= k_1\frac{12k_1^2+12}{4k_1^2+4}\\&= 3k_1 \\&= 3k_{AB}\end{align*}
kCDkAB=4c2(1+c2)k124c2(2k12c2+c21)+(k12+1)(1+c2)2+4c2k12(1+c2)+4c2(k12c21)8c2k12(1+c2)+(k12+1)(1+c2)2+4c2k12(1+c2)+4c2(k12c21)=(4c24c48c4+(1+c2)2+4c4+4c2+4c4)k124c2(c21)+(1+c2)24c2(8c28c4+(1+c2)2+4c4+4c2+4c4)k12+(1+c2)24c2=(3c4+2c2+1)k123c4+2c2+1(c42c2+1)k12+c42c2+1=(3c2+1)(c21)(c21)2=1+3c21c2 \begin{align*} \frac{k_{CD}}{k_{AB}} =& \frac{-4c^2(1+c^2)k_1^2-4c^2(2k_1^2c^2+c^2-1)+(k_1^2+1)(1+c^2)^2+4c^2k_1^2(1+c^2)+4c^2(k_1^2c^2-1)}{-8c^2k_1^2(1+c^2)+(k_1^2+1)(1+c^2)^2+4c^2k_1^2(1+c^2)+4c^2(k_1^2c^2-1)} \\ =& \frac{(-4c^2-4c^4-8c^4+(1+c^2)^2+4c^4+4c^2+4c^4)k_1^2-4c^2(c^2-1)+(1+c^2)^2-4c^2}{(-8c^2-8c^4+(1+c^2)^2+4c^4+4c^2+4c^4)k_1^2+(1+c^2)^2-4c^2} \\ =& \frac{(-3c^4+2c^2+1)k_1^2-3c^4+2c^2+1}{(c^4-2c^2+1)k_1^2+c^4-2c^2+1} \\ =& \frac{-(3c^2+1)(c^2-1)}{(c^2-1)^2} \\ =& \frac{1+3c^2}{1-c^2}\end{align*}

Problem 3.

Ellipse x2/3+y2/2=1x^2/3 + y^2/2 = 1 intersects line ll on points P(xp,yp),Q(xq,yq)P(x_p, y_p), Q(x_q, y_q) such that the area of OPQ\triangle OPQ is 6/2\sqrt{6}/2, or SOPQ=6/2S_{\triangle OPQ} = \sqrt{6}/2.

  1. Prove xp2+xq2x_p^2 + x_q^2 and yp2+yq2y_p^2 + y_q^2 are fixed values
  2. Let MM be the midpoint of PQPQ, find maximum value of OMPQ|OM|\cdot|PQ|
  3. Let DEG\triangle DEG inscribes on the ellipse such that SODE=SOEG=SOGD=6/2S_{\triangle ODE} = S_{\triangle OEG} = S_{\triangle OGD} = \sqrt{6}/2, check the existence of DEG\triangle DEG and its shape if it exists.

Solution:

We transform the xyx-y plane by: (x,y)(x/3,y/2)(x, y) \rightarrow (x/\sqrt{3}, y/\sqrt{2}), such that the ellipse becomes a unit circle. Since, SOPQ=12(xQxP)(yQ+yP)S_{\triangle OPQ} = \frac{1}{2}(|x_Q|-|x_P|)(|y_Q|+|y_P|) or SOPQ=12(xQ+xP)(yQyP)S_{\triangle OPQ}=\frac{1}{2}(|x_Q|+|x_P|)(|y_Q|-|y_P|), SOPQSOPQ/6S_{\triangle OPQ} \rightarrow S_{\triangle OPQ}/\sqrt{6}, which means after transformation SOPQ=1/2S_{\triangle OPQ} = 1/2.

We found that SOPQ=sinPOQ/2=1/2S_{\triangle OPQ} = \sin \angle POQ /2 = 1/2, therefore sinPOQ=1\sin\angle POQ = 1, which means OPOQOP\bot OQ.

We can set P(cosα,sinα),Q(sinα,cosα)P(\cos \alpha, \sin \alpha), Q(-\sin \alpha, \cos \alpha) as they are on unit circle after transformation.

Solution 3.1:

We can see that the value of xp2+xq2=cos2α+sin2α=1x_p^2 + x_q^2 = \cos^2\alpha + \sin^2\alpha = 1 is 1/31/3 of its original and yp2+yq2=sin2α+cos2α=1y_p^2+y_q^2 = \sin^2\alpha + \cos^2\alpha=1 is 1/21/2 of its original. Therefore on original ellipse,

xp2+xq2=3,yp2+yq2=2 x_p^2 + x_q^2 = 3, \quad y_p^2+y_q^2=2

Solution 3.2:

The original points on ellipse are P(3cosα,2sinα),Q(3sinα,2cosα)P(\sqrt{3}\cos\alpha, \sqrt{2}\sin\alpha), Q(-\sqrt{3}\sin\alpha, \sqrt{2}\cos\alpha), therefore the original value

OM2PQ2=(3(cosαsinα2)2+2(sinα+cosα2)2)(3(cosα+sinα)2+2(sinαcosα)2)=14(36cosαsinα+2+4cosαsinα)(3+6cosαsinα+24cosαsinα)=14(5sin2α)(5+sin2α)=14(25sin22α)254\begin{align*} |OM|^2\cdot|PQ|^2 &= (3(\frac{\cos\alpha - \sin\alpha}{2})^2+2(\frac{\sin\alpha + \cos\alpha}{2})^2)(3(\cos\alpha+\sin\alpha)^2+2(\sin\alpha-\cos\alpha)^2)\\ &= \frac{1}{4}(3-6\cos\alpha\sin\alpha+2+4\cos\alpha\sin\alpha)(3+6\cos\alpha\sin\alpha+2-4\cos\alpha\sin\alpha) \\ &= \frac{1}{4}(5-\sin2\alpha)(5+\sin2\alpha) \\ &= \frac{1}{4}(25-\sin^22\alpha) \leq \frac{25}{4}\end{align*}

Therefore the maximum value of OMPQ|OM|\cdot |PQ| is 5/25/2.

Solution 3.3:

If SODE=SOEG=SOGD=6/2S_{\triangle ODE} = S_{\triangle OEG} = S_{\triangle OGD} = \sqrt{6}/2, then ODOE,OEOG,ODOGOD \bot OE, OE \bot OG, OD \bot OG, which is not possible on xyxy plane, therefore DEG\triangle DEG does not exists.

Problem 4.

A circle OO has an inscribed triangle ABC\triangle ABC such that AB>BCAB > BC. Let EE be the midpoint of arc AC\overset{\frown}{AC}, EFABEF \perp AB on F. Prove AF=FB+BC|AF| = |FB| + |BC|.

Proof:

Let circle's radius be rr, and

A:(rcosα,rsinα)B:(rcosβ,rsinβ)C:(r,0)π>αβ>β>0\begin{align*} & A:(r\cos\alpha, r\sin\alpha) \\ & B:(r\cos\beta, r\sin\beta) \\ & C:(r, 0) \\ & \pi > \alpha - \beta > \beta > 0 \\\end{align*}

Then:

E:(rcosα/2,rsinα/2)BC=2rsinβ2AB=2rsinαβ2EB=2rsinα2β4AE=2rsinα4BF=EBcosEBAcosEBA=EB2+BA2EA22EBABAF=FB+BCAB=2BF+BCcosEBA=ABBC2BEcosEBA=EB2+BA2EA22EBAB=ABBC2EBEB2+BA2EA2=AB(ABBC)EB2+ABBC=EA2sin2α2β4+sinαβ2sinβ2=sin2α41cosα2β2cosα2+cosα2β2=1cosα20=0\begin{align*} & E:(r\cos\alpha/2, r\sin\alpha/2) \\ & |BC| = 2r\sin\frac{\beta}{2} \\ & |AB| = 2r\sin\frac{\alpha-\beta}{2} \\ & |EB| = 2r\sin\frac{\alpha-2\beta}{4} \\ & |AE| = 2r\sin\frac{\alpha}{4} \\ & |BF| = |EB| \cos\angle EBA \\ & \cos\angle EBA = \frac{|EB|^2 + |BA|^2-|EA|^2}{2|EB||AB|} \\ & |AF| = |FB| + |BC| \Leftrightarrow |AB| = 2|BF| + |BC| \Leftrightarrow \cos\angle EBA = \frac{|AB| - |BC|}{2|BE|} \\ & \Leftrightarrow \cos\angle EBA = \frac{|EB|^2 + |BA|^2-|EA|^2}{2|EB||AB|} = \frac{|AB| - |BC|}{2|EB|} \\ & \Leftrightarrow |EB|^2 + |BA|^2-|EA|^2 = |AB|(|AB|-|BC|) \\ & \Leftrightarrow |EB|^2 + |AB||BC| = |EA|^2 \\ & \Leftrightarrow \sin^2\frac{\alpha-2\beta}{4} + \sin\frac{\alpha-\beta}{2}\sin\frac{\beta}{2} = \sin^2\frac{\alpha}{4}\\ & \Leftrightarrow 1 - \cos\frac{\alpha-2\beta}{2} - \cos\frac{\alpha}{2}+\cos\frac{\alpha-2\beta}{2} = 1 - \cos\frac{\alpha}{2} \\ & \Leftrightarrow 0 = 0\end{align*}